normally preferred reactivity pattern.
The [$3+3$] annulation strategy described herein represents a promising new approach to highly functionalized six-membered ring carbocycles. Good to excellent stereochemical control can be achieved at multiple stereocenters in a predictable fashion, and products can be readily accessed in chiral, nonracemic form.

Acknowledgment. We thank the National Institutes of Health for support of this research in the form of a research grant (GM 35249) and an instrumentation grant (RR 01709). We are also grateful to Curt Haltiwanger for performing the X-ray crystal structure determination.

Supplementary Material Available: General synthetic procedure and complete spectral data for all compounds synthesized (8 pages). Ordering information is given on any current masthead page.

Formation of
 2,3-Dehydro-1,2-dihydro-1,1-dimethylnaphthalene, an "Isoaromatic" Molecule

Bernard Miller* and Xiaolian Shi ${ }^{\dagger}$

Department of Chemistry, University of Massachusetts Amherst, Massachusetts 01003

Received May 27, 1986
Revised Manuscript Received October 2, 1986
Compounds containing 1,3,5-cyclohexatriene rings ("aromatic compounds") are well-known. In contrast, compounds containing $1,2,4$-cyclohexatriene rings ("isoaromatic compounds") have never previously been observed even as transient intermediates.

We now report evidence for the formation and trapping of 2,3-dehydro-1,2-dihydro-1,1-dimethylnaphthalene (1), the first example of a molecule containing a $1,2,4$-cyclohexatriene ring.

Hydrocarbon 1 was formed by dehydrobromination of 2 (or its isomer 3). ${ }^{1} \quad$ Bromo olefins 2 and $\mathbf{3}$ were prepared in ca. 3:1 ratio from 1,1-dimethyl-2-tetralone as shown in Scheme I. The major isomer, 2, could be rapidly and quantitatively converted to 3 by treatment with potassium tert-butoxide solutions at room temperature (Scheme I).

When potassium tert-butoxide was added to a THF solution containing equimolar amounts of $\mathbf{2}$ and 1,3 -diphenylisobenzofuran at $50^{\circ} \mathrm{C}$, adducts $4\left(\mathrm{mp} \mathrm{192-194}{ }^{\circ} \mathrm{C}\right)$ and $5\left(\mathrm{mp} \mathrm{171-173}{ }^{\circ} \mathrm{C}\right)$ were obtained in a $3: 2$ ratio. (After chromatography on silica gel, the combined yield of $\mathbf{4}$ and 5 was 20%.) The structures of the two adducts were demonstrated by their elemental analyses and spectra. ${ }^{2}$

4

[^0]Scheme I^{a}

a (a) $2 \mathrm{Br}_{2}$; (b) quinoline, $120^{\circ} \mathrm{C}$; (c) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}$; (d) HCl , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (e) NaBH_{4} in aqueous diglyme.

Formation of adducts $\mathbf{4}$ and $\mathbf{5}$ can only reasonably result from Diels-Alder condensation reactions of the reactive intermediate 1.

Reaction of either $\mathbf{2}$ or $\mathbf{3}$ with potassium tert-butoxide at 50 ${ }^{\circ} \mathrm{C}$ in the absence of 1,3 -diphenylisobenzofuran yielded, in addition to a mixture of hydrocarbons from which no single compound could be isolated, the vinyl ether 6, identified by its elemental

analysis and spectra ${ }^{3}$ and its conversion to 3,3-dimethyl-2-tetralone on reaction with dilute acid. (Ether 6 can also be isolated in small amounts from reaction mixtures including 1,3-diphenylisobenzofuran.)
Most of the plausible routes for displacement of bromide in reaction of $\mathbf{2}$ or $\mathbf{3}$ with potassium tert-butoxide (e.g., additionelimination of tert-butoxide to 3 or initial dehydrobromination of $\mathbf{3}$ to form a benzocyclohexyne) should yield the conjugated ether 7 rather than $6 .{ }^{4}$ However, no evidence for formation of 7 could be detected. It is improbable that 7 would isomerize completely to 6 under the reaction conditions, since 7 should be the more stable isomer ${ }^{5}$ and since we observed that 2 -methoxy-1,4-dihydronaphthalene does not undergo isomerization to its conjugated isomer even at much longer reaction times under similar reaction conditions. We therefore suggest that 6 is formed by reaction of potassium tert-butoxide with 1 , with the resulting anion undergoing kinetically controlled protonation at the central carbon:

(2) Compound 4: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 0.18(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.55$ $(\mathrm{m}, 7 \mathrm{H}), 7.65(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.3,2 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0,2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.72,26.35,38.32,55.60,88.86,90.81,116.98,119.64$, $122.56,123.92,125.97,126.19,127.06,127.22,127.44,127.65,128.30$, $128.52,128.68,133.61,135.02,136.75,144.77,145.48,145.75,147.26$. Anal. C, H. Compound 5: ${ }^{1} \mathrm{H}$ NMR $\delta 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-1.25(\mathrm{~m}, 7 \mathrm{H}), 7.43-7.55(\mathrm{~m}$, $7 \mathrm{H}), 7.82-7.95(\mathrm{~m}, 4 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR $\delta 28.89,29.49,38.75,47.48,89.51$, $90.98,118.49,123.16,123.75,125.00,125.76,125.97,126.24,127.11,128.14$, $128.57,129.28,129.93,134.91,135.43,135.75,144.77,144.18,147.32$.
(3) ${ }^{1} \mathrm{H}$ NMR $\delta 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ ($\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.9-7.3 (m, 4 H). Anal. C, H .
(4) Formation of an ether from 2 rather than 3 seems unlikely, both because of the very low concentration of 2 in equilibrium with $\mathbf{3}$ and because both addition of bases to 2 and elimination of HBr from 2 should be much slower than similar reactions of 3 .
(5) 1-Methoxy-1,3-cyclohexadiene has been shown to be the most stable of the methoxycyclohexadiene isomers (Taskinnen, E.; Nummelin, K. J. Org. Chem. 1985, 50, 4844).

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for a grant in support of this work.

Registry No. 1, 105282-83-5; 2, 105282-78-8; 3, 105282-79-9; 4, 105282-80-2; 5, 105282-81-3; 6, 105282-82-4; 1,1-dimethyl-2-tetralone, 20027-76-3; 3-bromo-1,1-dimethyl-2-naphthalenone, 105282-76-6; 3-bromo-2-chloro-1,1-dimethyl-1,2-dihydronapthalene, 105282-77-7; 1,3diphenylisobenzofuran, 5471-63-6; 4,4-dimethyl-2-tetralone, 83810-57-5.

Methylidene Migratory Insertion into an Ru-H Bond

Emily A. Carter and William A. Goddard III*
Contribution No. 7409 Arthur Amos Noyes, Laboratory of Chemical Physics California Institute of Technology Pasadena, California 91125

Received May 5, 1986
The migratory insertions of CH_{x} fragments into transition-metal-hydrogen and transition-metal-alkyl bonds have long been proposed as chain initiation and propagation steps in the Fisch-er-Tropsch synthesis of hydrocarbons. ${ }^{1}$ Particularly for ruthenium, an effective heterogeneous catalyst for the production of high molecular weight polymethylenes, ${ }^{2}$ there is strong indirect evidence that the chain growth mechanism involves methylidene insertion into growing alkyl chains. ${ }^{1,3}$ Several experiments on homogeneous systems point to the facility of direct CH_{2} insertions into both $\mathrm{M}-\mathrm{H}$ and $\mathrm{M}-\mathrm{R}$ bonds. ${ }^{4}$ Thorn and Tulip ${ }^{52}$ proposed that acidification of a hydrido hydroxymethyliridium complex proceeds via a hydridomethyleneiridium intermediate which undergoes CH_{2} insertion into the $\mathrm{Ir}-\mathrm{H}$ bond to yield an iridium methyl complex. Upon hydrogen abstraction from mononuclear metal dimethyl complexes, Thorn and Tulip, ${ }^{5 b}$ as well as Cooper, ${ }^{6}$ Maitlis, ${ }^{7}$ and Werner, ${ }^{8}$ have postulated the intermediacy of methyl methylidene metal complexes which insert CH_{2} into $\mathrm{M}-\mathrm{CH}_{3}$ and then β-hydride eliminate en route to the formation of ethylene hydride complexes. Thus these studies suggest that both the chain initiation and propagation steps in Fischer-Tropsch synthesis may be facile even at a single metal center.

As a model for these important elementary reactions, we have used ab initio quantum mechanical techniques to investigate the migratory insertion of CH_{2} into an adjacent $\mathrm{Ru}-\mathrm{H}$ bond. To our knowledge, these calculations provide the first quantitative description of the energetics of such a reaction, including evaluations of both the activation barrier to insertion as well as the relative stabilities of the reactant and product. The reaction pathway is depicted below

where $\mathbf{1}$ is a model for 18 -electron complexes such as $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$.

[^1]

Figure 1. Reaction coordinate for the insertion of CH_{2} into $\mathrm{Ru}-\mathrm{H}$ in 1 to form $\mathrm{ClRu}\left(\mathrm{CH}_{3}\right)$ (2) at the $\mathrm{HF}, \mathrm{GVB}-\mathrm{PP}(3 / 6)$, $\mathrm{GVB}-\mathrm{RCI}(3 / 6)$, $\operatorname{GVBCI}(3 / 6)$, and $\operatorname{GVBCI}(3 / 6)-\mathrm{MCSCF}$ levels. Energy ($\mathrm{kcal} / \mathrm{mol}$) is plotted relative to the total energy for 2 vs. $R(\mathrm{Ru}-\mathrm{H}) /[R(\mathrm{Ru}-\mathrm{H})+$ $R(\mathrm{C}-\mathrm{H})]$ (normalized reaction coordinate). Also shown at the top are the corresponding $\mathrm{H}-\mathrm{Ru}-\mathrm{C}$ angles (deg). The full GVBCI-MCSCF leads simultaneously to a proper description of both the reactant-like and product-like configurations important at the transition state and hence to a smooth potential curve. Some lower level calculations lead to a less smooth transition, the wave function being less capable of simultaneous description of both reactant and product channels.
$\left(\mathrm{PPh}_{3}\right) \mathrm{Ru}(\mathrm{R})\left(\mathrm{CH}_{2}\right)(3)$ or $\left[\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Ru}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)\right]^{+}(4)$, the intermediate postulated by Werner. ${ }^{8}$ As discussed previously, ${ }^{\text {, }}$ 1 conforms to the valence bond (VB) view of oxidation states in which electronegative ligands may remove no more than two units of charge from the metal (the easily ionized s-electrons), leaving the other ligands to form covalent bonds to unpaired d-electrons (or to form donor bonds into empty metal valence orbitals). Thus ligands with large electron affinities ${ }^{10}$ such as $\mathrm{Cp}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and Cl form rather ionic bonds with the metal valence electrons, while neutral π-donor ligands (e.g., π-aryls) and phosphines require empty metal valence orbitals. Finally, ligands with unpaired electrons (and small electron affinities, e.g., $\mathrm{CH}_{2}, \mathrm{CH}_{3}, \mathrm{H}, \mathrm{NO}$, etc.) require unpaired metal d-electrons with which to form covalent bonds. As a result, we believe the singlet state of 1 is a good model for 3 and 4 , since all three complexes have a metal VB oxidation state of $+1 . R u(I)$ is d^{7}, with three unpaired d electrons to form covalent bonds to R and CH_{2} in 1,3 , and 4.

Consider the process of inserting the CH_{2} ligand into the $\mathrm{Ru}-\mathrm{H}$ bond to form an $\mathrm{Ru}-\mathrm{CH}_{3}$ species. We begin with an $\mathrm{Ru}-\mathrm{H}$ bond and two $\mathrm{Ru}-\mathrm{C}$ in-plane bonds (one σ and one π) which are converted to a $\mathrm{C}-\mathrm{H}$ bond, one $\mathrm{Ru}-\mathrm{C}$ bond and an Ru d lone pair. Notice that the presence of the in-plane π-bond ${ }^{11}$ suggests a

[^2]
[^0]: ${ }^{+}$Visiting scholar from Zhejiang University, Hangzhou, PRC.
 (1) 1,2-Cyclohexadienes have similarly been prepared by dehydrobromination of 1-bromocyclohexenes: Wittig, G.; Fritze, P. Justus Liebigs Ann. Chem. 1968, 711, 82. Bottini, A. T.; Corson, F. P.; Fitzgerald, R.; Frost, K. A., II. Tetrahedron 1972, 28, 4881 . Bottini, A. T.; Hilton, L. L.; Plott, J. Ibid. 1975, 31, 1997. Balci, M.; Jones, W. M. J. Am. Chem. Soc. 1980, 102, 7607; 1981, 103, 2874.

[^1]: (1) Biloen, P.; Sachtler, W. M. H. Adv. Catal. 1981, 30, 165.
 (2) (a) Anderson, R. B. In Catalysis; Emmett, P. H., Ed.; Reinhold: New York, 1956; Vol. IV, pp 237-242. (b) Pichler, H.; Buffleb, H. Brennst.-Chem. 1940, 21, 257, 273, 285.
 (3) (a) Brady, R. C., III; Pettit, R. J. Am. Chem. Soc. 1980, 102, 6181. (b) Ibid. 1981, 103, 1287. (c) Baker, J. A.; Bell, A. T. J. Catal. 1982, 78 , 165-181.
 (4) The first observation of general alkylidene insertions into M-R bonds was by: Sharp, P. R.; Schrock, R. R. J. Organomet. Chem. 1979, 171, 43. (5) (a) Thorn, D. L.; Tulip, T. H. Organometallics 1982, 1, 1580. (b) Thorn, D. L.; Tulip, T. H. J. Am. Chem. Soc. 1981, 103, 5984.
 (6) Hayes, J. C.; Pearson, G. D. N.; Cooper, N. J. J. Am. Chem. Soc. 1981, $103,4648$.
 (7) Isobe, K.; Andrews, D. G.; Mann, B. E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1981, 809.
 (8) Kletzin, H.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1983, 22, 46.

[^2]: (9) Carter, E. A.; Goddard, W. A., III J. Am. Chem. Soc. 1986, 108, 2180.
 (10) The electron affinities of Cp and Cl are 2.2 eV (Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data 1977, 6, 736-772) and 3.62 eV (Hotop, H.; Lineberger, W. C. J. Chem. Phys. Ref. Data 1975, 4, 539-576), respectively.
 (11) This conformation is the lowest energy orientation for $\mathbf{1}$: Carter, E . A.; Goddard, W. A., III, manuscript in preparation.

